您的位置首页百科知识

角速度与线速度的关系

角速度与线速度的关系

的有关信息介绍如下:

v(线速度)=ω(角速度)r。

v(线速度)=ΔS/Δt=2πr/T=ωr=2πrf (S代表弧长,t代表时间,r代表半径,f代表频率)。

ω(角速度)=Δθ/Δt=2π/T=2πn (θ表示角度或者弧度)。

线速度也有平均值和瞬时值之分。如果所取的时间间隔很小很小,这样得到的就是瞬时线速度。

注意,当△t足够小时,圆弧AB几乎成了直线,AB弧的长度与AB线段的长度几乎没有差别,此时,△l也就是物体由A到B的位移。因此,这里的v其实就是直线运动中的瞬时速度,不过用来描述圆周运动而已。

角速度与线速度的关系

扩展资料

在三维坐标系中,角速度变得比较复杂。在此状况下,角速度通常被当作向量来看待;甚至更精确一点要当作伪向量。它不只具有数值,而且同时具有方向的特性。数值指的是单位时间内的角度变化率,而方向则是用来描述转动轴的。概念上,可以利用右手定则来标示角速度伪向量的正方向。原则如下:

假设将右手(除了大拇指以外)的手指顺着转动的方向朝内弯曲,则大拇指所指的方向即是角速度向量的方向'

正如同在二维坐标系的例子中,一个质点的移动速度相对于原点可以分成一个沿着径向以及另一个垂直径向的分量。

举例而言,原点与质点的速度垂直分量的组合可以定义一个转动平面,质点在此平面上的行为就如同在二维坐标系中的状况下,其转动轴则是一条通过原点且垂直此平面的线,这个轴订定了角速度伪向量的方向,而角速度的数值则是如同在二维坐标系状况下求得的伪纯量的值。

当定义一个指向角速度伪向量方向单位向量时,可以用类似二维坐标系的方式来表示角速度。

参考资料来源:百度百科-角速度

参考资料来源:百度百科-线速度