课程导报人教版数学答案
的有关信息介绍如下:那个课程导报右下角那个网址上就是啊,去注册下载。第一期:11.1~11.2(1)测试题基础巩固一、精挑细选,一锤定音1.D.2.D.3.C.4.D.5.D.6.C.提示:A中的条件不能构成三角形;B中的条件可画出两个三角形;D中的条件可画出无数个三角形.二、慎思妙解,画龙点睛7.4.8.CD=CB或∠DAC=∠BAC.9.65.10.22.提示:先证△ABC≌△DCB,则∠A=∠D=78°,∠ABC=180°-(∠A+∠ACB)=62°.∠ABD=∠ABC-∠DBC=22°.三、过关斩将,胜利在望11.解:依题意,∠B=∠C=30°.∴∠BFC=∠A+∠B=80°,∴∠BOC=∠BFC+∠C=110°.12.证明:∵AB⊥BE,DE⊥BE,∴∠B=∠E=90°.∵BF=CE,∴BF+FC=CE+FC,即BC=EF.又∵AB=DE,∴△ABC≌△DEF(SAS).∴∠A=∠D.13.证明:∵OA=OB,OC=OD,AC=BD,∴△OAC≌△OBD(SSS).∴∠AOC=∠BOD.∴∠AOC-∠BOC=∠BOD-∠BOC,即∠AOB=∠COD.∵OA⊥OB,∴∠AOB=90°.∴∠COD=90°,即OC⊥OD.14.(1)如果①、③,那么②或如果②、③,那么①;(2)下面选择“如果①、③,那么②”加以证明.证明:∵BE∥AF,∴∠AFD=∠BEC.又∵∠A=∠B,AD=BC,∴△ADF≌△BCE(AAS).∴DF=CE.∴DF-EF=CE-EF,即DE=CF.15.(1)∵∠ABC=90°,点F为AB延长线上一点,∴∠ABC=∠CBF=90°.在△ABE与△CBF中,∴△ABE≌△CBF(SAS).∴AE=CF.(2)由题意知,△ABC和△EBF都是等腰直角三角形,∴∠ACB=∠EFB=45°.∵∠CAE=30°,∴∠AEB=∠CAE+∠ACB=30°+45°=75°.由(1)知△ABE≌△CBF,∴∠CFB=∠AEB=75°,∴∠EFC=∠CFB-∠EFB=75°-45°=30°.能力提高1.①②③.2.证明:∵∠AEC=180°-∠DEC=100°,∠ADB=100°,∴∠AEC=∠ADB.∵∠BAD+∠CAE=80°,∠ACE+∠CAE=∠CED=80°,∴∠BAD=∠ACE.又∵AB=AC,∴△ABD≌△CAE(AAS) .∴AD=CE,AE=BD.∴ED=AD-AE=CE-BD.3.全等三角形还有:△AA′E≌△C′CF,△A′DF≌△CB′E.选△AA′E≌△C′CF进行说明.∵AD=CB,∠D=∠B=90°,AB=CD,∴△ABC≌△CDA(SAS).由平移的性质可得∴△A′B′C′≌△ABC.∴△A′B′C′≌△ABC≌△CDA,∴∠A=∠C′,∴△AA′E≌△C′CF(ASA).4.(1)∵∠A+∠APB=90°,∠APB+∠QPC=90°,∴∠A=∠QPC.(2)当BP=3时,PC=BC-BP=2=AB,则△BAP≌△CPQ(ASA),∴PA=PQ.当BP=7时,点P在C的延长线上,如图所示,则PC=BP-BC=2=AB.则△BAP≌△CPQ(ASA),∴PA=PQ,综上可知,当BP=3或BP=7时,PA=PQ.第三期:第十一章综合测试题(一)一、精挑细选,一锤定音1.D. 2.B. 3.C. 4.C. 5.A.6.C. 7.C. 8.B. 9.C. 10.D.二、慎思妙解,画龙点睛11.27°. 12.60°. 13.150°.14.答案不唯一,如EH=BE或AE=CE或AH=BC.15.垂直. 16.100°.17.10. 18.(8,6三、过关斩将,胜利在望19.证明:在△AEB与△ADC中,AB=AC,∠A=∠A,AE=AD,∴△AEB≌△ADC,∴∠B=∠C.20.△A1B1C1与△ABC不一定全等,图略.21.△ADF≌△ABE,理由:∵AC平分∠BCD,AE⊥BE,AF⊥DF,∴AE=AF,∠AEB=∠AFD=90°.又AB=AD,∴Rt△ABE≌Rt△ADF(HL).22.连接ME,MF,∵AB∥CD,∴∠B=∠C.在△BEM与△CFM中,BE=CF,∠B=∠C,BM=CM,∴△BEM≌△CFM(SAS).∴∠BME=∠CMF.∴∠EMF=∠BME+∠BMF=∠CMF+∠BMF=∠BMC=180°,∴E,M,F在一直线上.23.⑴证明:∵∠BDE=∠CDE,∴∠ADB=∠ADC.又∵AE为角平分线,∴∠BAE=∠CAE,且AD=AD,∴△ABD≌△ACD(ASA),∴AB=AC.⑵结论还成立,∵AE为高线,∴∠AEB=∠AEC=90°.又∠BDE=∠CDE,且DE=DE,∴△BDE≌△CDE. ∴BE=CE.又∠AEB=∠AEC=90°,且AE=AE,∴△ABE≌△ACE(SAS),∴AB=AC.24.(1)∵BD,CE分别是△ABC的边AC,AB上的高,∴∠ADB=∠AEC=90°.∴∠ABP=90°-∠BAD,∠ACE=90°-∠DAB,∴∠ABP=∠ACE.在△ABP和△QCA中,∴△ABP≌△QCA(SAS),∴AP=AQ.(2)∵△ABP≌△QCA,∴∠P=∠CAQ.又∵∠P+∠PAD=90°,∴∠CAQ+∠PAD=90°,∴∠PAQ=90°,∴AP⊥AQ.四、附加题25.(1)∵ s,∴BP=CQ=3×1=3cm.∵AB=10cm,点D为AB的中点,∴BD=5cm.又∵PC=BC-BP,BC=8cm,∴PC=8-3=5cm,∴PC=BD.又∵∠B=∠C,∴△BPD≌△CQP.(2)∵ , ∴BP≠CQ.又∵△BPD≌△CPQ,∠B=∠C,则BP=PC=4,CQ=BD=5,∴点P,点Q运动的时间 s,∴ cm/s.26.图②成立,图③不成立.证明图②.延长DC至点K,使CK=AE,连接BK,则△BAE≌△BCK,∴BE=BK,∠ABE=∠KBC.∵∠FBE=60°,∠ABC=120°,∴∠FBC+∠ABE=60°,∴∠FBC+∠KBC=60°,∴∠KBF=∠FBE=60°,∴△KBF≌△EBF,∴KF=EF,∴KC+CF=EF,即AE+CF=EF.图③不成立,AE,CF,EF的关系是AE-CF=EF.第十一章综合测试题(二)一、精挑细选,一锤定音1.C.2.A.3.C.4.D.5.C.6.B.7.C.8.C.9.C.10.C.二、慎思妙解,画龙点睛11.∠DBE,AC.12.30°.13.答案不唯一,如∠B=∠D.14.答案不唯一,如Rt△ACD≌Rt△BCE,AC=BC,∠DAC=∠EBC,∠ADC=∠BEC,从中任选两个.15.145°.16.78°.17.7.18.①②④.三、过关斩将,胜利在望19.∵BC=BD,点E是BC的中点,点F是BD的中点,∴BE=BF.又∵∠ABE=∠ABF,AB=AB,∴△ABE≌△ABF.20.全等.由折叠可知△BDE≌△BDC.∴DE=DC,∠E=∠C=90°.∵AB=DC,∴AB=ED.又∵∠A=∠E=90°,∠AFB=∠EFD,∴△ABF≌△EDF(AAS) .21.在四边形ABCD中,已知CD=BC,∠D+∠B=180°,求证:对角线AC平分∠BAD.证明:过点C作AB,AD的垂线,垂足分别为点E,F,∵∠ADC+∠B=180°,∠ADC+∠CDF=180°,∴∠B=∠CDF.在△CDF和△CBE中,∴△CDF≌△CBE(AAS),∴CF=CE.又∵CF⊥AD,CE⊥AB,∴点C在∠BAD的平分线上,即对角线AC平分∠BAD.22.(1)FC;(2)FC=EA;(3)提示:用SAS证△ABE≌△CDF.23.∵∠B=90°,ED⊥AC于点D,BE=DE,∴AE平分∠BAC,∴∠EAD= ∠BAC.过点B作BF⊥AC于点F,则∠BFA=∠BFC.∵AB=BC,BF=BF,∴Rt△BFA≌Rt△BFC(HL),∴∠BAC=∠C,∴∠EAD= ∠C.24.(1)垂直,相等;(2)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF得AD=AF,∠DAF=90°.∵∠BAC=90°,∴∠DAF=∠BAC,∴∠DAB=∠FAC.又AB=AC,∴△DAB≌△FAC,∴CF=BD,∠ACF=∠ABD.又∵∠ABD+∠ACB=90°,∴∠ACF+∠ACB=45°,即CF⊥BD.四、附加题25.(1)作图略;在OA和OB上截取OE=OF,在OP上任取一点C,连接CE,CF,则△COE≌△COF;(2)在AC上截取AM=AE,连接FM,AD是∠BAC的平分线,∴∠EAF=∠MAF.又∵AF=AF,∴△AEF≌△AMF,∴EF=MF.∵CE是∠BCA的平分线,∠ACB=90°,∴∠DCF=45°.又∵∠B=60°,∴∠BAD=15°,∴∠CDF=75°,∴∠AMF=∠AEF=105°,∴∠FMC=75°,∴∠CDF=∠CMF.又∵CF=CF,∠DCF=∠MCF.∴△CDF≌△CMF,∴FD=FM,∴EF=DF.26.(1)90;(2)①α+β=180°.理由:∵∠BAC=∠DAE,∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.又AB=AC,AD=AE,∴△ABD≌△ACE,∴∠B=∠ACE,∴∠B+∠ACB=∠ACE+∠ACB,∴∠B+∠ACB=β.∵α+∠B+∠ACB=180°,∴α+β=180°.②当点D在射线BC上时,α+β=180°,当点D在射线BC的反射延长线时,α=β.),(8,8),(8,-6)或(8,-8).