幂函数导数的推导
的有关信息介绍如下:幂函数f(x)=x ^n,其导数为f'(x)=nx^(n-1),证明其导数利用导数定义f'(x)=lim△y/△x,(△x趋于0)。证法一:n为自然数f'(x)=lim【(x+△x)^n一x^n】/△x=lim{(x^n+Cn 1x^(n-1)△x+Cn 2x^(n-2)△x^2+…+Cn n△x^n)-x^n}/△x=lim{Cn 1x^(n-1)+Cn 2x^(n-2)△x+…+Cn n△x^(n-1)}=limCn 1x^(n-1)=nx^(n-1)证法二:n为任意实数y=x^n,两边取对数,得lny=nlnx,两边对x求导(1/y)*y'=a/x所以y'=ny/x=nx^n/x=nx^(n-1)