圆的切线方程推导过程 重点是过程
的有关信息介绍如下:设直线方程:y=k(x-x0)+y0 既然点在圆上,则圆心和切点连线的斜率k=(y0-b)/(x0-a) 所以切线斜率:-1/k=(a-x0)/(y0-b) 所以切线方程:y=(a-x0)/(y0-b) *(x-x0)+y0 注意:求圆的切线,当已知切点时,用上述方法;当切点未知,即从圆外某点做切线,利用圆心到直线的距离等于半径求斜率。其实上述结果是一个普遍结论:过圆(X-a)^2+(y-b)^2=r^2上一点(Xo,Yo)的切线方程为 (x0-a)(x-x0)+(y0-b)(y-y0)=0