您的位置首页生活百科

微分算子法是什么?

微分算子法是什么?

的有关信息介绍如下:

微分算子法是求解常系数非齐次线性微分方程特解的有效方法,基于算子多项式的理论,针对二阶常系数线性微分方程,论文给出了非线性项为指数函数、三角函数、幂函数及其混合函数的撤分算子特解公式,实例表明特解公式在解题中具有可应用性、有效性和简捷性。

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。

微分算子法是什么?

应用

1、在物理科学的应用中,像拉普拉斯算子在建立与求解偏微分方程中起着主要的作用。

2、在微分拓扑中,外导数与李导数算子有内蕴意义。

3、在抽象代数中,导子的概念是微分算子不要求分析的一个推广。通常这样的推广用于代数几何与交换代数。

描述

在数学中,微分算子是定义为微分运算之函数的算子。首先在记号上,将微分考虑为一个抽象运算是有帮助的,它接受一个函数得到另一个函数(以计算机科学中高阶函数的方式)。

当然也有理由不单限制于线性算子;例如施瓦茨导数是一个熟知的非线性算子。不过这里只考虑线性情形。