直角三角形斜边上的中线等于斜边的一半吗?
的有关信息介绍如下:是的。
证明过程如下:
取AC的中点E,连接DE。取BC的中点D
∵AD是斜边BC的中线
∴BD=CD=1/2BC
∵E是AC的中点
∴DE是△ABC的中位线
∴DE//AB(三角形的中位线平行于底边)
∴∠DEC=∠BAC=90°(两直线平行,同位角相等)
∴DE垂直平分AC
∴AD=CD=1/2BC(垂直平分线上的点到线段两端距离相等)
直角三角形的性质:
1、直角三角形中,斜边上的中线等于斜边的一半(也就是直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
2、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。