您的位置首页百科知识

lnx的函数图像是什么样子的

lnx的函数图像是什么样子的

的有关信息介绍如下:

lnx的函数图像如下图所示:

lnx的函数图像是什么样子的

ln为一个算符,意思是求自然对数,即以e为底的对数。

e是一个常数,等于2.71828183…

lnx可以理解为ln(x),即以e为底x的对数,也就是求e的多少次方等于x。

lnx=loge^x

扩展资料:

自然对数lnx的发展历史:

在1614年开始有对数概念,约翰·纳皮尔以及Jost Bürgi(英语:Jost Bürgi)在6年后,分别发表了独立编制的对数表,当时通过对接近1的底数的大量乘幂运算,来找到指定范围和精度的对数和所对应的真数,当时还没出现有理数幂的概念。

1742年William Jones(英语:William Jones (mathematician))才发表了幂指数概念。按后来人的观点,Jost Bürgi的底数1.0001相当接近自然对数的底数e,而约翰·纳皮尔的底数0.99999999相当接近1/e。

实际上不需要做开高次方这种艰难运算,约翰·纳皮尔用了20年时间进行相当于数百万次乘法的计算,Henry Briggs(英语:Henry Briggs (mathematician))建议纳皮尔改用10为底数未果,他用自己的方法于1624年部份完成了常用对数表的编制。