β-甘露聚糖的结构及其水解所需的酶
的有关信息介绍如下:软木的主要半纤维素半乳葡甘露聚糖以两种形式出现,两者的半乳糖含量不同(Timell,1967)。在低半乳糖形式,半乳糖:葡萄糖:甘露糖的比率大约为0.1:1:4;而在高半乳糖形式,其比率是1:1:3。两种类型半乳葡甘露聚糖的骨架都是由β-1,4连接的随机分布的D-吡喃甘露糖基和D-吡喃葡糖基残基构建的。a-D-吡喃半乳糖基残基通过a-1,6连键与骨架中的D-吡喃甘露糖基残基相连。骨架中的大概每四个吡喃己糖基在位置2或3部分乙酰化。乙酰基基团的迁移与木聚糖的情况类似,因此很难测定它们在天然多聚体中的实际分布。硬木仅仅包含一些葡甘露聚糖。有几个结构变种的葡甘露聚糖和半乳甘露聚糖也出现在几个一年生植物中,特别是在种子、块茎和鳞茎中(Aspinall,1959;Mccleary,1979)。
10.5.2.1 内切-β-甘露聚糖酶
内切-β-甘露聚糖酶是水解甘露聚糖、半乳甘露聚糖、葡甘露聚糖和半乳葡甘露聚糖中β-1,4-糖苷键的酶。因为除了甘露糖单元,葡甘露聚糖和半乳葡甘露聚糖在多聚体的骨架中还包含葡萄糖单元,它们也可能被特异性的内切糖苷酶(内切-β-葡苷露聚糖酶)水解,此酶对甘露聚糖骨架的多聚体不起作用,因此不能称作甘露聚糖酶。
对不同木霉种属的甘露聚糖酶的研究相比木聚糖酶的研究要少得多,仅有关于哈茨木霉E58和里氏木霉 Rut C-30的报道。一方面,两个种属都产生多个形式的甘露聚糖酶(Torrie et al.,1990;Stalbrand et al.,1993)。当用纤维素或不同的甘露聚糖作为碳源时木霉能够产生甘露聚糖酶。哈茨木霉在半乳甘露聚糖与在纤维素上产生的甘露聚糖酶活性数量几乎相同,但是在半乳甘露聚糖上的甘露聚糖酶的比活明显较高。另一方面,发现里氏木霉在有纤维素时产生的甘露聚糖酶活性比在有半乳甘露聚糖时高(Arisan-Atac et al.,1993)。然而,真菌在半乳甘露聚糖上长得不好,而且在纤维素和在半乳甘露聚糖上产生的单位生物量的甘露聚糖酶数量相似。甘露二糖或甘露糖的甘露聚糖酶诱导合成还没有被观察到(Torrie et al.,1990;Arisan-Atac et al.,1993)。
被纯化并详细研究的唯一木霉甘露聚糖酶来自里氏木霉Rut C-30(Arisan-Atac et al.,1993;Stalbrand et al.,1993)。在培养滤液中至少能检测到五个具有甘露聚糖酶活性的酶形式。等电点为4.6和5.4的两个主要的酶形式已经被纯化和表征。它们的分子量稍微有些差异,分别为51kDa和53kDa(Stalbrand et al.,1995)。另外两种甘露聚糖酶的蛋白质性质非常相似。氨基酸比较和N-末端氨基酸序列似乎也相同。Arisan-Atac等(1993)纯化的甘露聚糖酶的pI值为5.2,分子量为46kDa,极有可能与Stalbrand等(1993)分离的pI为5.2的酶相同。
里氏木霉编码甘露聚糖酶的基因man1最近被分离并在酿酒酵母中表达。研究发现里氏木霉pI4.6和pI5.4两种纯化形式的甘露聚糖酶,以及其他形式的甘露聚糖酶,可能是man1基因编码的。与此一致的是,里氏木霉基因组中man1 基因的缺失使得甘露聚糖酶活性降低到亲本菌株的10%以下。不同甘露聚糖酶形式的产生,至少部分是由于翻译后修饰(例如脱氨基等)造成的。
基于基因序列,发现里氏木霉甘露聚糖酶有与几个纤维素酶相似的结构域:一个催化结构域和被连接肽隔开的CBD。该酶也强烈地与纤维素结合,但是没有检测到与甘露聚糖的特异性结合。然而,该酶没有任何纤维素水解活性。基于疏水簇分析,甘露聚糖酶(MAN I)属于糖基水解酶家族5。该家族包含几个纤维素酶及来自Streptomyces lividan,Caldocellulosiruptor saccharolyticus和Aspergillus aculeatus的三个其他甘露聚糖酶(Suurnakki et al.,1993;Suurnakki et al.,1996)。Aspergillus aculeatus甘露聚糖酶与里氏木霉甘露聚糖酶有较高的氨基酸序列同源性(70%),但是它不含CBD。两个细菌甘露聚糖酶似乎彼此比与真菌甘露聚糖酶的关系更近,因此表明细菌和真菌的酶的活性可能不同。在里氏木霉甘露聚糖序列中也发现了家族5 聚糖酶催化残基的两个谷氨酸残基(Primalco Biotec,Finland,unpublished results)。
10.5.2.2 甘露聚糖水解中的附属酶
(1)β-甘露糖苷酶和β-葡糖苷酶。有报道指出,里氏木霉仅产生量非常低的胞内β-甘露糖苷酶,推测这可能是真菌在甘露聚糖上生长慢的原因(Arisan-Atac et al.,1993)。之后并没有研究纯化或进一步研究木霉β-甘露糖苷酶。可能甚至是真菌不产生任何特异性β-甘露糖苷酶,而且用P-硝基苯-D-吡喃甘露糖苷做底物测定的活性是由于与a-呋喃阿拉伯糖苷酶的β-木糖苷酶活性类似的其他外切葡聚糖酶的假活性。在真菌中也可能出现β-甘露糖苷酶但多为胞内出现。在这种情况下,伴随着纤维素酶的生物合成,与二葡糖苷酶透过酶类似的质膜束缚运输系统能够把甘露聚糖片段运输到细胞内(Kubicek et al.,1993)。
已知里氏木霉至少产生两种β-葡糖苷酶(Barnett et al.,1991;Chen et al.,1992)。目前尚未研究这些酶对葡甘露寡糖的水解活性,但是用于水解实验的其他生物的β-葡糖苷酶能够从这些寡糖的非还原末端去除吡喃葡糖基残基(Takahashi et al.,1984)。目前,还不确定参与纤维素降解的β-葡糖苷酶是否参与半乳葡甘露聚糖的降解。
(2)a-半乳糖苷酶。在酵母中建立的里氏木霉表达文库的筛选证明里氏木霉至少产生三个a-半乳糖苷酶。三个酶的基因(agl1,agl2和agl3)都已得到分离和表征。为了研究它们的催化活性,在酵母中产生了对应的三种酶(AGL I,AGLII和AGL III)(Margolles-Clark et al.,1996c)。
AGL I是三个酶中对多聚半乳甘露聚糖活性最高的。然而AGL I的水解程度相当低,甘露聚糖酶的存在明显提高了其活性,而添加β-甘露糖苷酶则没有多大效果。目前已经纯化了在酿酒酵母中产生的里氏木霉a-半乳糖苷酶,也有两个关于直接来自真菌培养液的里氏木霉a-半乳糖苷酶的纯化的报道(Zeilinger et al.,1993;Kachurin et al.,1995)。报道指出,这些a-半乳糖苷酶的分子量和等电点非常类似,分别为50kDa和54kDa与5.2和5.25,表明这些数据定义的是同一个酶。根据分子量和水解特性,纯化的酶与AGL I相同(Zeilinger et al.,1993;Margolles-Clark et al.,1996d)。AGL I的P-硝基苯-a-D-半乳糖苷活性能够被半乳糖竞争性抑制。
另一个a-半乳糖苷酶AGL II对多聚底物几乎没有活性,但是与甘露聚糖酶表现协同作用,而且添加β-甘露糖苷酶后水解程度进一步提高。当反应中添加甘露聚糖酶和β-甘露糖苷酶时,AGL Ⅲ的活性也被加强。然而,AGL Ⅲ的水解程度比从AGL Ⅱ获得水解程度低得多(Margolles-Clark et al.,1996e)。AGL Ⅱ和AGL Ⅲ与β-甘露糖苷酶的明显协同作用表明,他们优先选择在寡糖的非还原末端的甘露糖单元中携带半乳糖取代基的小寡糖做底物。AGL Ⅲ对p-硝基苯-a-D-吡喃半乳糖苷比对蜜二糖(Gala1-6Glc)的活性低。这能解释为什么当P-硝基苯-a-D-吡喃半乳糖苷做底物时在里氏木霉Rut C-30 培养滤液中没有发现该酶,尽管基因agl3似乎表达很好(Margolles-Clark et al.,1996e)。另外,agl2基因似乎表达好,这可以解释为什么AGL Ⅲ没有先被分离。Zeilinger等(1993)报道了在里氏木霉培养滤液中除了主要的半乳糖苷外,次要的a-半乳糖苷酶AGL Ⅰ的存在。
一方面,根据推断的AGL Ⅰ和AGL Ⅲ的氨基酸序列,它们属于包含植物、动物、酵母和丝状真菌源a-半乳糖苷酶的糖基水解酶家族27。另一方面,AGLⅡ与家族36的细菌a-半乳糖苷酶相似,因此是有报道的与相应原核酶表现相似性的第一个真核a-半乳糖苷酶。AGL Ⅲ在N-末端携带在家族27的其他酶中没有发现的230个额外的氨基酸。这个额外区域对催化活性似乎不重要,因此很可能是另一个与目前所描述的任何多糖结合结构域不相同的功能结构域。最近报道里氏木霉AGL Ⅰ的活性位点包含一个催化上重要的甲硫氨酸(Kachurin et al.,1995)。
(3)乙酰葡甘露聚糖酯酶。里氏木霉培养滤液的半乳葡甘露聚糖的去糖基化不如葡糖醛酸木聚糖酶的去糖基化有效,而且尚未从任何木霉分离到特异性乙酰葡甘露聚糖酯酶(Tenkanen et al.,1993)。能够从木糖寡糖释放乙酰基侧基的里氏木霉乙酰基酯酶(AE),也能够作用于乙酰基化的甘露糖寡糖。有研究已经报道了裂褶霉(Schiozophyllum com-mune)乙酰基木聚糖酯酶的相似特性(Biely et al.,1996)。类似葡糖醛酸木聚糖的去糖基化中乙酰基木聚糖酯酶的行为,也发现AE在乙酰基化的半乳葡甘露聚糖的水解中与米曲霉(Aspergillus oryzae)的乙酰基葡甘露聚糖酯酶协同起作用,认为观察到的协同性至少部分是由于位于半乳糖侧基附近的可能易接近乙酰基酯酶但不易接近乙酰基葡甘露聚糖酯酶的乙酰基基团的去除(Tenkanen,1995)。